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History of Credit Scoring

FICO
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Interesting Chat on Binning in Linkedin started by Wensui Liu about 9 
days ago; around March 10, 2019.

https://www.linkedin.com/feed/update/u
rn:li:activity:6510606874491052032/
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Quick Introduction to Linear Regression

• Linear Regression has the form of:

𝑌𝑖 = 𝑏0 + 𝑏1 ∗ 𝑋1𝑖 + 𝑏2 ∗ 𝑋2𝑖 …+ 𝑏𝑝 ∗ 𝑋𝑝𝑖 + 𝑒𝑖

• i ranges from 1 to n where n is the number of observations in your modelling 
sample.

• Y is the variable you are trying to predict, also known as the dependent 
variable (DV).

• 𝑿𝟏, 𝑿𝟐,. . , 𝑿𝒑𝒊 are the p predictors or independent variables (IVs) that are being 

used to predict Y in the linear equation.  X variables can include nonlinear 
transformations of original X terms and/or include interactions of other 
independent variables.

• 𝒆𝒊 is the error term (or residual) for each observation. 
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Quick Introduction to Linear Regression

• OLS Regression procedures fit the values of the 𝑏𝑗’s for j=0 to p.  Typically 

solving for b’s that would minimize the sum of errors squared, σ𝑖=1
𝑛 𝑒𝑖
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• Linear regression solutions require that the error terms follow a normal 
distribution with constant variance.

• Logistic regression requires a LOGIT link and a BINOMIAL distribution.

• Poisson or negative Binomial distribution for count models.
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Issues with Binning Independent Variables

• Binning continuous variables will reduce the predictive power of 
the variable in a predictive model.  

• Results are expressed in terms of a step function relationship 
between the predictors and the dependent variable.  

• Results often don’t validate well in out of time samples.  

• See Irwin and McClelland (2003).
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Alternatives to Binning

• Use the continuous variable (ordinal, interval, and ratio) as a 
continuous independent variable.

• What if the relationships between an IV and a DV are not linear?

• If the relationship is piecewise linear then linear splines can be used to fit 
the data points.  However linear splines cannot fit curvilinear data. 
Decision on where to place Knots should be validated as being logical.

• Power and/or log transformations of the independent or dependent 
variable can prove useful in linearizing the relationship.  

• Polynomial functions and/or piecewise polynomial splines such as cubic 
splines can fit curved relationships.

• The issue with cubic splines is that the tails of the fit often don’t behave 
well.  As an alternative to cubic splines, restricted cubic splines force the 
tails to be linear and have other advantages we will review in this paper.  
Also Knot placement is not that important.
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Scatterplot Smoothing Techniques to 
Investigate Nonlinearity.

• How you select variables is part art and part science.  Some 
guidelines to consider:
• Don’t use stepwise regression (Flom and Cassell, 2007 and Frank Harrell 

2015).

• Run collinearity diagnostics on all IVs to eliminate harmful collinearity.  
Many methods are available but would suggest the COLLIN option in PROC 
REG without the COLLINOINT option or PROC VARCLUS. 

• Run scatterplot smoothing for each IV on the X axis and the DV on the Y 
axes.  This may generate lot of plots to look at you maybe able to weed out 
variables showing no bivariate relationship to the DV.  There still maybe a 
multivariate effect but with large number of variables often common in 
banking and finance models, the effects maybe different than what is 
observed in the bivariate scatterplot.

• These plots may show unexpected behavior that one may want to investigate 
the quality of the data.

• Missing values will not show up in the plots but that is another discussion on 
imputation.

• Understanding your data is as important as running the regression 
model.
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Scatterplot Smoothing Techniques to 
Investigate Nonlinearity.

• There are 2 scatterplot smoothing options in  the new SG procedures 
which we will review.

• LOESS:  Not a spline but a nonparametric local weighted regression 
function fit to the data within a chosen neighborhood of points.  There is a 
LOESS procedure if you want more control of the output which we will 
illustrate a few examples.

• PBSPLINE: Plots a spline that automatically picks the smoothing 
parameter that minimizes AICC  (Eilers and Marx 1996).
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Scatterplot Smoothing: LOESS Procedure Example using SGPLOT

%let DS=sashelp.cars; 

%let Y=MPG_Highway;

%let X=Horsepower;

ods rtf  file ="LOESS_TESTING.doc" style=banker;                 

ods graphics on / ANTIALIASMAX=21500;  

proc sgplot data=&DS.;                                           

LOESS Y=&Y. X=&X. / smooth=0.5;                                

XAXIS  grid;                                                   

YAXIS  grid;

title LOESS Fit;

title2 Using SGPLOT;

run;

ods graphics off;                                                

ods rtf close;
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Scatterplot Smoothing: LOESS Procedure Example using SGPLOT
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LOESS Procedure Example using PROC LOESS
%let DS=sashelp.cars; 

%let Y=MPG_Highway;

%let X=Horsepower;

options orientation=landscape;                                   

ods rtf  file ="LOESS_TESTING.doc" style=banker;                 

ods graphics on / ANTIALIASMAX=21500;  

title PROC LOESS;

title2;

proc loess data=&ds. plots(only)=(FitPlot);

model &Y.=&x.

/smooth=0.5 alpha=.05 all;

run;

ods graphics off;                                                

ods rtf close;
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LOESS Procedure Example using PROC LOESS
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PROC LOESS Variations:  Let LOESS pick the Smooth= parm
%let DS=sashelp.cars; 

%let Y=MPG_Highway;

%let X=Horsepower;

options orientation=landscape;                                   

ods rtf  file ="LOESS_TESTING.doc" style=banker;                 

ods graphics on / ANTIALIASMAX=21500;  

proc loess data=&ds. plots(only)=(fitplot);

model &Y.=&x.

/select=AICC alpha=.05 all;

run 

ods graphics off;                                                

ods rtf close;
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PROC LOESS Variations:  Let LOESS pick the Smooth= parm
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Scatterplot Smoothing: PBSPLINE Example using SGPLOT

proc sgplot data=sashelp.cars;

pbspline y=MPG_HIGHWAY x=HORSEPOWER / 

CLM

CLI

alpha=0.05  

smooth=4

markerattrs=(symbol=dot color=red size=5)

;

xaxis grid; yaxis grid;

run;

• Let’s simulate some data that looks similar to the ratio of actual 

balances on a loan product over the contractual balance each month 

on book (mob) for a number of vintages.
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Scatterplot Smoothing: PBSPLINE Example using SGPLOT.
Output
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Scatterplot Smoothing For Binary Dependent Variables
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• For credit scores based on logistic regression we need to see the LOG of 

ODDS  transformation as the DV variable.

• Options:

• One can run a binning for each IV using PROC RANK and calculate 

the log of odds for each bin.

• Calculate the log of odds for each level of the IV.

• For most multivariate models, the model will be developed not using 

binning of the IV.  Binning is done to visualize the Log of Odds  as opposed 

to the binary results.  

𝑫𝑽 = 𝑳𝑵(
𝒎𝒆𝒂𝒏 𝒆𝒗𝒆𝒏𝒕

(𝟏 −𝒎𝒆𝒂𝒏(𝒆𝒗𝒆𝒏𝒕)
)



Scatterplot Smoothing For Binary Dependent Variables
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• Simulated data.  Code is available if interested.

• Getting DV, Log of Odds without binning.  Large data (n=23,938) and few 

classes of the IV; Number of Revolving Open Credit Cards.

• NO BINNING

proc means data=simulate nway noprint;

class cards;

var good;

output out=nobins mean=;

run;

proc print data=nobins; run;

data model;

set nobins;

log_of_odds = log(good/(1-good));

run;

proc sgplot data=model;

loess y=log_of_odds x=cards;

xaxis grid;

yaxis grid;

title Nobins

run; 

title;



Scatterplot Smoothing For Binary Dependent Variables
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• Loess Plot

Obs cards _TYPE

_

_FREQ

_

good

1 1 1 5123 0.01074

2 2 1 5506 0.02779

3 3 1 2290 0.30873

4 4 1 109 0.67890

5 5 1 4447 0.60558

6 6 1 5055 0.30663

7 7 1 1408 0.09872



Scatterplot Smoothing For Binary Dependent Variables with 100 bins.
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proc rank data=simulate 

out=ranky

ties = low

groups=100;

var   cards;

ranks r_cards;

run;

proc means data=ranky nway noprint;

class r_cards;

var cards good;

output  out=bins mean=;

run;

proc print data=bins; run;

data model2;

set bins;

log_of_odds = log(good/(1-good));

run;

proc sgplot data=model2;

loess y=log_of_odds x=cards;

xaxis grid;

yaxis grid;

title Bins;

run; 



Scatterplot Smoothing For Binary Dependent Variables
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• Loess Plot

Obs r_cards _TYPE

_

_FREQ

_

cards good

1 0 1 5123 1 0.01074

2 21 1 5506 2 0.02779

3 44 1 2290 3 0.30873

4 53 1 109 4 0.67890

5 54 1 4447 5 0.60558

6 73 1 5055 6 0.30663

7 94 1 1408 7 0.09872

Bilenas, J. (2010), “Using PROC RANK and PROC UNIVARIATE to Rank or Decile Variables”
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Some parametric and nonparametric splines in model development.

• There are a growing number of model procedures in SAS that 
incorporate splines as independent variables.  Some of these are 
parametric splines and some are nonparametric.  These can be used 
for scatterplot smoothing and also included in multivariate regression 
models.  

• In this tutorial we will focus in on these spline methods.
• Linear Splines
• Monotonic Splines using PROC TRANSREG
• Restricted (or Natural) Cubic Splines.
• MARS via ADAPTIVEREG.

• Some SAS procedures use splines but may not provide spline 
transformations.  However, with these procedures you can save a 
MODEL STORE to score other data using PROC PLM (Tobias and Cai, 
2010).  
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Simple Linear Spline
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Why Looking at Correlations May not Identify 
Strong Predictors.

• What does a correlation of 0 mean?

• If a potential IV has a correlation with the DV of, say -0.006 should that 

variable be dropped?
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Correlation between x and y is low at -0.00617. 

Why Looking at Correlations May not Identify 
Strong Predictors.
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Simple Linear Splines to Handle Nonlinearity.
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Simple Linear Splines to Handle Nonlinearity.
Code:

data mod;

set sample;

xt = max(0,x-3);

*xt = 0 <> x-3;  /* this will work too */

run;

proc reg data=mod;

model y = x xt;

run;
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Simple Linear Splines to Handle Nonlinearity.
Output:

Analysis of Variance

Sum of           Mean

Source                   DF        Squares         Square    F Value    Pr > F

Model                     2      279.99950      139.99975    3610.46    <.0001

Error                   497       19.27177        0.03878

Corrected Total         499      299.27127

Root MSE              0.19692    R-Square     0.9356
Dependent Mean        1.79263    Adj R-Sq 0.9353

Coeff Var 10.98478

Parameter Estimates

Parameter       Standard

Variable     DF       Estimate          Error    t Value    Pr > |t|

Intercept     1    -0.00009683        0.02958      -0.00      0.9974

x             1        0.99757        0.01331      74.93      <.0001

xt 1       -1.99998        0.02354     -84.98      <.0001
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Simple Linear Splines to Handle Nonlinearity.
Model Fit:
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Restricted Cubic Splines: Parametric Splines

• Many Polynomial transformations and/or Cubic Splines do not fit well at 

the tails.  An alternative to consider is Restricted Cubic Splines (Stone and 

Koo 1985).  Also known as Natural Cubic Splines.

• Splines are required to be linear at end points.  As a result fewer terms are 

required in the model  

• Placement of Knots are not important.  Usually predetermined percentiles 

based on sample size:

k Quantiles

3 .10 .5 .90

4 .05 .35 .65 .95

5 .05 .275 .5 .725 .95

6 .05 .23 .41 .59 .77 .95

7 .025 .1833 .3417 .5 .6583 .8167 .975
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Restricted Cubic Splines

• Percentile values can be derived using PROC UNIVARIATE.

• Can Optimize number of Knots selecting number based on minimizing 

AICC or SBC.

• Provides a parametric regression function.

• Sometimes knot transformations make for difficult interpretation.  

Graphical review of the model will be required.

• May be difficult to incorporate interaction terms.

• Much more efficient than categorizing continuous variables into dummy 

terms.

• Macro available from Frank Harrell.

• http://biostat.mc.vanderbilt.edu/wiki/pub/Main/SasMacros/survrisk.txt
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Restricted Cubic Splines

proc univariate data=sashelp.cars noprint;

var horsepower;

output out=knots pctlpre=P_ pctlpts=5 27.5 50 72.5 95;

run;

proc print data=knots; run;

35

Obs P_5 P_27_5 P_50 P_72_5 P_95

1 115 170 210 245 340



Restricted Cubic Splines

options nocenter mprint;

data test;

set sashelp.cars;

%rcspline (horsepower,115, 170, 210, 245, 340);

run;
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%rcspline

/*MACRO RCSPLINE

For a given variable named X and from 3-10 knot locations,

generates SAS assignment statements to compute k-2 components

of cubic spline function restricted to be linear before the

first knot and after the last knot, where k is the number of

knots given.  These component variables are named c1, c2, ...

ck-2, where c is the first 7 letters of X.

Usage:

DATA; ....

%RCSPLINE(x,knot1,knot2,...,norm=)   e.g. %RCSPLINE(x,-1.4,0,2,8)

norm=0 : no normalization of constructed variables

norm=1 : divide by cube of difference in last 2 knots

makes all variables unitless

norm=2 : (default) divide by square of difference in outer knots

makes all variables in original units of x

Reference:

Devlin TF, Weeks BJ (1986): Spline functions for logistic regression

modeling. Proc Eleventh Annual SAS Users Group International.

Cary NC: SAS Institute, Inc., pp. 646-51.

Author  : Frank E. Harrell Jr.

Clinical Biostatistics, Duke University Medical Center

Date    : 10 Apr 88

Mod     : 22 Feb 91 - normalized as in S function rcspline.eval

06 May 91 - added norm, with default= 22 Feb 91

10 May 91 - fixed bug re precedence of <>

*/
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%rcspline

%MACRO RCSPLINE(x,knot1,knot2,knot3,knot4,knot5,knot6,knot7,

knot8,knot9,knot10, norm=2);

%LOCAL j v7 k tk tk1 t k1 k2;

%LET v7=&x; %IF %LENGTH(&v7)=8 %THEN %LET v7=%SUBSTR(&v7,1,7);

%*Get no. knots, last knot, next to last knot;

%DO k=1 %TO 10;

%IF %QUOTE(&&knot&k)=  %THEN %GOTO nomorek;

%END;

%LET k=11;

%nomorek: %LET k=%EVAL(&k-1); %LET k1=%EVAL(&k-1); %LET k2=%EVAL(&k-2);

%IF &k<3 %THEN %PUT ERROR: <3 KNOTS GIVEN.  NO SPLINE VARIABLES CREATED.;

%ELSE %DO;

%LET tk=&&knot&k;

%LET tk1=&&knot&k1;

DROP _kd_; _kd_=

%IF &norm=0 %THEN 1;

%ELSE %IF &norm=1 %THEN &tk - &tk1;

%ELSE (&tk - &knot1)**.666666666666; ;

%DO j=1 %TO &k2;

%LET t=&&knot&j;

&v7&j=max((&x-&t)/_kd_,0)**3+((&tk1-&t)*max((&x-&tk)/_kd_,0)**3

-(&tk-&t)*max((&x-&tk1)/_kd_,0)**3)/(&tk-&tk1)%STR(;);

%END;

%END;

%MEND;
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Restricted Cubic Splines: Variable Transformations

LOG:

MPRINT(RCSPLINE):   DROP _kd_;

MPRINT(RCSPLINE):   _kd_= (340 - 115)**.666666666666 ;

MPRINT(RCSPLINE):

horsepower1=max((horsepower-115)/_kd_,0)**3+((245-

115)*max((horsepower-340)/_kd_,0)**3

-(340-115)*max((horsepower-245)/_kd_,0)**3)/(340-245);

MPRINT(RCSPLINE):  ;

MPRINT(RCSPLINE):

horsepower2=max((horsepower-170)/_kd_,0)**3+((245-

170)*max((horsepower-340)/_kd_,0)**3

-(340-170)*max((horsepower-245)/_kd_,0)**3)/(340-245);

MPRINT(RCSPLINE):  ;

MPRINT(RCSPLINE):

horsepower3=max((horsepower-210)/_kd_,0)**3+((245-

210)*max((horsepower-340)/_kd_,0)**3

-(340-210)*max((horsepower-245)/_kd_,0)**3)/(340-245);

MPRINT(RCSPLINE):  ;

43   run;
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Restricted Cubic Splines

proc reg data=sashelp.cars;

model MPG_Highway = horsepower horsepower1 

horsepower2 horsepower3;

LINEAR: TEST horsepower1, horsepower2, horsepower3;

run; quit;

proc genmod data=test;

model MPG_Highway = horsepower horsepower1 

horsepower2 horsepower3 / dist=normal link=identity;

output out=spline pred=fit;

run;

proc sort data=spline;

by horsepower;

run;

proc sgplot data=spline;

scatter x=horsepower y=MPG_Highway;

series x=horsepower y=Fit / lineattrs=(thickness=3 color=red);

xaxis grid;

yaxis grid;

run;
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Restricted Cubic Splines
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Number of Observations Read 428

Number of Observations Used 428

Analysis of Variance

Source DF

Sum of

Squares

Mean

Square F Value Pr > F

Model 4 8147.64458 2036.91115 145.37 <.0001

Error 423 5926.86710 14.01151

Corrected 

Total

427 14075

Root MSE 3.74319 R-Square 0.5789

Dependent Mean 26.84346 Adj R-Sq 0.5749

Coeff Var 13.94453



Restricted Cubic Splines
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Parameter Estimates

Variable Label DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Intercept Intercept 1 63.32145 2.50445 25.28 <.0001

Horsepower 1 -0.22900 0.01837 -12.46 <.0001

horsepower1 1 0.83439 0.12653 6.59 <.0001

horsepower2 1 -2.53834 0.49019 -5.18 <.0001

horsepower3 1 2.55417 0.66356 3.85 0.0001

Test LINEAR Results for Dependent Variable MPG_Highway

Source DF

Mean

Square F Value Pr > F

Numerator 3 750.78949 53.58 <.0001

Denominator 423 14.01151

NOTE:  GENMOD output not displayed in this presentation.



Restricted Cubic Splines (5 Knots)
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Using PROC GLMSELECT
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Wicklin, R. (2017) The DO Loop Blog:  Regression with 

restricted cubic splines in SAS. 

https://blogs.sas.com/content/iml/2017/04/19/restricted-cubic-

splines-sas.html.

title Restricted Cubic Spline;

title2 Harell Knot Placement;

proc glmselect data=sashelp.cars;

effect spl = spline(horsepower / details naturalcubic basis=tpf(noint)                 

KNOTMETHOD=LIST(115, 170, 210, 245, 340) );

model MPG_Highway = spl / selection=none; /* fit model by using  

spline effects */

output out=SplineOut predicted=Fit;       /* output predicted values for 

graphing */

quit;

proc sort data=splineout;

by horsepower;

run;  

proc sgplot data=SplineOut noautolegend;

scatter x=horsepower y=MPG_Highway;

series x=horsepower y=Fit / lineattrs=(thickness=3 color=red);

xaxis grid;

yaxis grid;

run;

https://blogs.sas.com/content/iml/2017/04/19/restricted-cubic-splines-sas.html


Using PROC GLMSELECT
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Restricted Cubic Spline

Harell Knot Placement

The GLMSELECT Procedure

Least Squares Summary

Step

Effect

Entered

Number

Effects In

Number

Parms In SBC

* Optimal Value of Criterion

0 Intercept 1 1 1501.0621

1 spl 2 5 1155.1343*

/*SBC Excluding SPLINES */

proc glmselect data=sashelp.cars;

model MPG_HIGHWAY =  horsepower / selection=none;

run;

Least Squares Summary

Step

Effect

Entered

Number

Effects In SBC

* Optimal Value of Criterion

0 Intercept 1 1501.0621

1 Horsepower 2 1274.8170*



Using PROC GLMSELECT
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Analysis of Variance

Source DF

Sum of

Squares

Mean

Square F Value Pr > F

Model 4 8147.64458 2036.91115 145.37 <.0001

Error 423 5926.86710 14.01151

Corrected Total 427 14075

Root MSE 3.74319

Dependent 

Mean

26.84346

R-Square 0.5789

Adj R-Sq 0.5749

AIC 1564.83872

AICC 1565.03824

SBC 1155.13433

Parameter Estimates

Parameter DF Estimate

Standard

Error t Value Pr > |t|

Intercept 1 63.321452 2.504447 25.28 <.0001

spl 1 1 -0.229002 0.018374 -12.46 <.0001

spl 2 1 0.003708 0.000562 6.59 <.0001

spl 3 1 -0.008524 0.001646 -5.18 <.0001

spl 4 1 0.006559 0.001704 3.85 0.0001

• Analysis of Variance, R-Squares Match the results we got using the %RCSPLINE  

• First 2 estimates match.  Spl 1 is the Horsepower.  Spl2 – spl4 are the 3 knot transformed terms; 

Horsepower1 – Horsepower3.  GLMSELCT may be using different normalizations (norm=0 or 

norm=1).  Nope, no match.

• Similar splines can be added in PROC LOGISTIC and other procedures  using the EFFECT 

statement.

• I should of named the EFFECT HORSEPOWER as opposed to SPL.  You can run multivariate 

splines in the model so you want to name the spline the original IV.



Using GLMSELECT
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And Now, for something completely different:
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MARS: Multivariate Adaptive Regression Splines

• MARS (Friedman 1991) modeling methodology is available 

through PROC ADAPTIVEREG (experimental in SAS/STAT 12.1; 

production in 13.1).

• MARS is a nonparametric regression technique that derives 

knots directly from the data.

• Use recursive partitioning concepts like in a binomial tree 

model, but instead of bins you get continuous, differentiable 

piecewise truncated power spline functions, also known as 

“basis” functions of the form:

MAX(0, x-k)

or

MAX(0, k-x)

where k is the knot value and x is the value of the 

independent variable.
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MARS: Multivariate Adaptive Regression Splines

• MARS was designed for high dimensional problems 

that can involve high order interactions that can 

result in equations that can be extremely difficult to 

interpret.

• Simulation and visual methods as suggested by Flom 

(2015) can be used to examine monotonicity and the 

effects of changes to the independent variables.
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PROC ADAPTIVEREG: Features
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• SAS implementation of MARS in PROC 

ADAPTIVEREG offers a myriad features that 

demonstrate the power of this flexible methodology.

• It can handle non-normal distributions such as 

• Binomial for logistic regression.

• Single trial as well as events/trials syntax 

support for the dependent variable

• Poisson/negative binomial for count models



MARS: Process

• MARS differs from the other techniques mentioned in that it 

determines the final selection of splines and knots through a 

form of forward (growing) and backward (pruning) stepwise 

selection. 

1. In the forward process pairs of basis functions are added 

until a lack of fit (LOF) criteria are met.

2. Backward selection then removes bases from the over fit 

forward process and selects a model that minimizes the 

generalized cross validation criterion (GCV).

• Both LOF and GCV are dependent on the residual sum of 

squares.
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MARS: Default model code and forward bases
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proc adaptivereg data=sashelp.cars plots=all details=bases;

model MPG_Highway = horsepower;

run;

The ADAPTIVEREG Procedure

Fit Statistics

GCV                                13.44050

GCV R-Square                        0.59319

Effective Degrees of Freedom             15

R-Square                            0.61943

Adjusted R-Square                   0.61308

Mean Square Error                  12.75330

Average Square Error               12.51492

Basis Information

Name       Transformation

Basis0     1                                      

Basis1     Basis0*MAX(Horsepower - 168,0)

Basis2     Basis0*MAX(         168 - Horsepower,0)

Basis3     Basis0*MAX(Horsepower - 117,0)

Basis4     Basis0*MAX(         117 - Horsepower,0)

Basis5     Basis0*MAX(Horsepower - 124,0)

Basis6     Basis0*MAX(         124 - Horsepower,0)

Basis7     Basis0*MAX(Horsepower - 320,0)

Basis8     Basis0*MAX(         320 - Horsepower,0)

Basis9     Basis0*MAX(Horsepower - 250,0)

Basis10    Basis0*MAX(         250 - Horsepower,0)

Basis11    Basis0*MAX(Horsepower - 300,0)

Basis12    Basis0*MAX(         300 - Horsepower,0)

Basis13    Basis0*MAX(Horsepower - 238,0)

Basis14    Basis0*MAX(         238 - Horsepower,0)

Basis15    Basis0*MAX(Horsepower - 227,0)

Basis16    Basis0*MAX(         227 - Horsepower,0)

Basis17    Basis0*MAX(Horsepower - 192,0)

Basis18    Basis0*MAX(         192 - Horsepower,0)

Basis19    Basis0*MAX(Horsepower - 201,0)

Basis20    Basis0*MAX(         201 - Horsepower,0)



MARS: Default model individual bases
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MARS: Default final model listing
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Regression Spline Model after Backward Selection

Name       Coefficient    Parent    Variable          Knot

Basis0          1.1099              Intercept             

Basis1         -0.5889    Basis0    Horsepower      168.00

Basis2          0.6016    Basis0    Horsepower      168.00

Basis3          1.0551    Basis0    Horsepower      117.00

Basis5         -0.6193    Basis0    Horsepower      124.00

Basis11        0.04818    Basis0    Horsepower      300.00

Basis17         0.4986    Basis0    Horsepower      192.00

Basis19        -0.3979    Basis0    Horsepower      201.00



MARS: Default model output

56



MARS: Reducing the number of basis functions

57

proc adaptivereg data=sashelp.cars plots=all details=bases;

model MPG_Highway = horsepower/MAXBASIS=5;

run; The ADAPTIVEREG Procedure

Fit Statistics

GCV                                14.11053

GCV R-Square                        0.57291

Effective Degrees of Freedom              7

R-Square                            0.58483

Adjusted R-Square                   0.58189

Mean Square Error                  13.78154

Average Square Error               13.65275

Basis Information

Name      Transformation

Basis0    1                                      

Basis1    Basis0*MAX(Horsepower - 168,0)

Basis2    Basis0*MAX(         168 - Horsepower,0)

Basis3    Basis0*MAX(Horsepower - 117,0)

Basis4    Basis0*MAX(         117 - Horsepower,0)

Regression Spline Model after Backward Selection

Name      Coefficient    Parent    Variable          Knot

Basis0        12.3262              Intercept             

Basis1        -0.3182    Basis0    Horsepower      168.00

Basis2         0.4394    Basis0    Horsepower      168.00

Basis3         0.2888    Basis0    Horsepower      117.00



MARS: Reduced basis function output
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MARS: Cross validation and scoring code
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proc adaptivereg data=sashelp.cars plots=all details=bases SEED=789;

ODS OUTPUT BASES=b BWDPARAMS=p;

model MPG_Highway = horsepower/maxbasis=5;

PARTITION FRACTION(TEST=0.25 VALIDATE=0.25 );

run;

data b;

set b;

transformation=transtrn(transformation,"Basis0*",trimn(''));

run;

data _null_;

set b end=eof;

file "bases.sas";

put name '= ' transformation '; '  ' label '  name ' = "' transformation 

'";';

run;

proc sort data=b; by name; run;

proc sort data=p; by name; run;

data _null_;

merge b p(in=p); by name; if p;

file "score.sas";

if _n_ = 1 then put "predicted = 0;";

put "predicted + " coefficient best16. ' * ' transformation +(-1) ';';

run;



MARS: Bases.sas and Scores.sas
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data bases_score;

set sashelp.cars;

%include "bases.sas";

%include "score.sas";

run;

data bases_score;

set sashelp.cars;

Basis0 = 1 ;  label Basis0  = "1 ";

Basis1 = MAX(Horsepower - 160,0) ;  label Basis1  = "MAX(Horsepower - 160,0) ";

Basis2 = MAX(160 - Horsepower,0) ;  label Basis2  = "MAX(160 - Horsepower,0) ";

Basis3 = MAX(Horsepower - 120,0) ;  label Basis3  = "MAX(Horsepower - 120,0) ";

Basis4 = MAX(120 - Horsepower,0) ;  label Basis4  = "MAX(120 - Horsepower,0) ";

predicted = 0;

predicted + 20.3511093361348 * 1;

predicted + -0.2246883942159 * MAX(Horsepower - 160,0);

predicted + 0.36250353038409 * MAX(160 - Horsepower,0);

predicted + 0.18824377782436 * MAX(Horsepower - 120,0);

run;
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